Specifications NBX-6040/NBX-6040A

Laser Wavelength 1550±2 nm						
Distance Range		50m, 100m, 250m, 500m, 1km, 2.5km, 5km, 10km, 25 km				
Measurement Frequency	y Range	9~13 GHz				
Range of Strain Measurements		-30,000 to +40,000 με (-3% to 4%)				
Measurement Frequency Scan Step		1, 2, 5, 10, 20, 50MHz				
Readout Resolution		5 cm (minimum)				
Sampling Points		2,000,000 (maximum)				
Average Count Settings		2^5~2^24 times (inc. Hardware Average Count 2^16)				
Pulse Width		1 ns	2 ns	5 ns	10 ns	
Spatial Resolution		10 cm	20 cm	50 cm	100cm	
Dynamic Range ⁽¹⁾		1 dB	2 dB	3 dB	6 dB	
Max. Measurement Distance (2)		1 km	5 km	10 km	20 km	
Optical Budget ⁽¹⁾⁽⁵⁾	Optical Budget ⁽¹⁾⁽⁵⁾		7 dB	8 dB	10 dB	
Measurement Accuracy $(\sigma)^{(3)}$		7.5με / 0.35 °C				
Repeatability (σ) ⁽³⁾⁽⁴⁾		2.4με / 0.1 °C				
Measurement Speed (6)	NBX-6040	5 seconds (minimum)				
weasurement Speed V	NBX-6040A	0.1 seconds (minimum)				
Signal Terminal	Signal Fiber	SM optical fiber				
0.g	Fiber Connector	FC-APC / SC-APC (factory option)				
Suitable Fiber		SM optical fiber				
Power Supply		AC100~240V 50/60Hz 250VA				
Laser Class		Class 1 (IEC60825-1: 2001)				
Dimensions / Weight		approx. 456(W)×485(D)×286(H) mm / 30 kg				
Operating Temperature		10~35 °C, Humidity below 85% (no dew condensation)				
Storage Temperature		0~50 °C				
Place of Production		Japan				

- (1) Based on 2^15 average cycles.
- (2) Based on average fiber loss of 0.3dB/km using SM fiber.
- (3) Based on the measurement of strain-free, UV-coated fiber.
 (4) The standard deviation range of measurement value for 5 consecutive measurements for 100 consecutive points.
 (5) Within the allowable range being adjusted by the optical power, except the case of nonlinear phenomena.
- (6) Within the setting of 50m range, 2^h14count settings, 41scan steps except the time of Pre-Pump Adjustment.
 (1) (4) are all based on a frequency scan step of 5MHz and with Pre-Pump Adjustment and Auto Frequency Adjustment on.

*Specifications are subject to change without notice.

Contact Address

Neubrex Co., Ltd.

Sakae-machi-dori 1-1-24

Chuo-ku, Kobe, Hyogo 650-0023, Japan Tel: +81-78-335-3510 Fax: +81-78-335-3515

www.neubrex.com

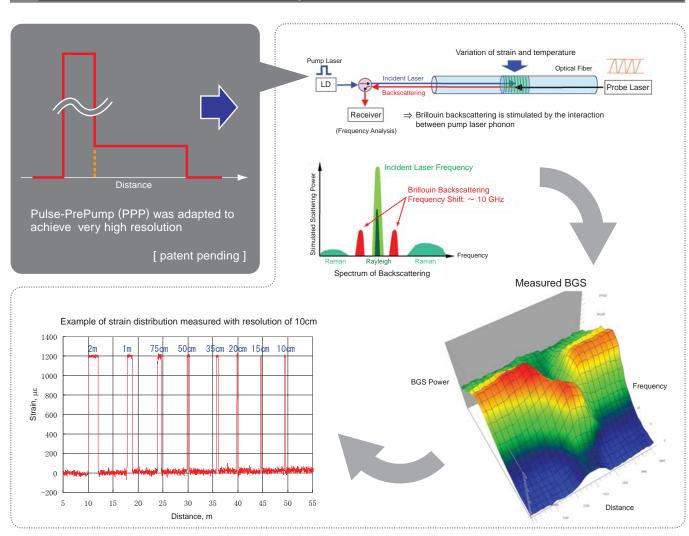
When every point of the optical fiber is a sensor

Neural Optical Fiber Scope_ NEUBRESCOPE NBX-6040 / NBX-6040A

Spatial Resolution: less than 10 cm

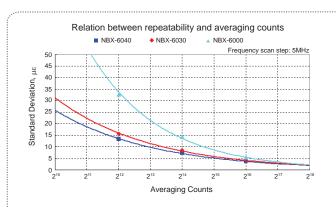
Repeatability of Strain Measurement: less than 2.4 $\mu\epsilon$

Repeatability of Temperature Measurement: less than 0.1 °C

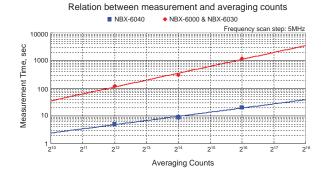

Measurement Speed: 5 sec / 0.1 sec

Segment 3

Principle of PPP-BOTDA

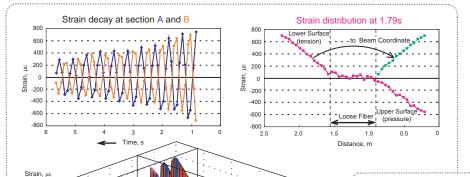

Neubrex technology of PPP-BOTDA successfully increase the spatial resolution and strain accuracy one-order higher than previous products. This is the only one technology in the world.

Open Architecture


- Open Architecture (OA), allows User to customize, automate, and extend the standard capabilities of NEUBRESCOPE software
- .NET Remoting in communication layer

Accuracy Ever Reached

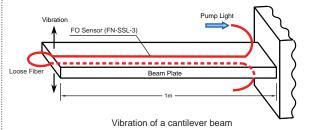
Frequency scan step	5 MHz (frequency counts 41)			2 MHz (frequency counts 101)		
Averaging counts	212	214	2 ¹⁶	212	214	2 ¹⁶
Accuracy (με)	±12.0	±9.0	±7.5	±10.0	±7.0	±5.0
Repeatability (με)	±13.4	±7.3	±3.7	±11.4	±4.8	±2.4
Speed (sec)	5	9	20	13	25	50


Speed-accuracy trade-off for different frequency steps (NBX-6040)

The effective way of increasing the speed of measurements is to decrease the averaging count of optical signal. As a result. however, this reduces the SNR (signal to noise ratio), and thus, decreases accuracy of measurements. Setting larger frequency scan steps also reduces the measurement time, but increases the strain error in the transfer from frequency data. So there is a trade-off relation among speed, averaging count, and frequency scan step. The table on the left lists the performance parameters of NBX-6040.

Comparing with our previous models, each of these parameters has been improved 10 times. Neubrex is the one and only manufacturer in the world providing you with the machine of such specifications

Fast Mode (NBX-6040A)


FO Sensor strain distribution

Conditions:

- · Spatial resolution: 10 cm
- Sampling rate: 5 cm
 Measured strain range: ±1500 με
- Averaging counts: 2⁸

Range	50m	100m	500m	
Repeatability (με)	50	50	50	
Speed (sec)	0.089	0.11	0.25	

Speed-accuracy trade-off for different

The example demonstrates first ever distributed measurements during vibrations. The dynamic behavior of specimens as long as 100 m can be recorded with 10 Hz speed, each measurement containing up to 2,000 sampling points.